首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41497篇
  免费   5340篇
  国内免费   2241篇
电工技术   1404篇
技术理论   6篇
综合类   3449篇
化学工业   7014篇
金属工艺   4754篇
机械仪表   2021篇
建筑科学   2503篇
矿业工程   4395篇
能源动力   1617篇
轻工业   2013篇
水利工程   4290篇
石油天然气   1532篇
武器工业   212篇
无线电   2566篇
一般工业技术   5220篇
冶金工业   4022篇
原子能技术   362篇
自动化技术   1698篇
  2024年   76篇
  2023年   991篇
  2022年   1078篇
  2021年   1542篇
  2020年   1672篇
  2019年   1480篇
  2018年   1286篇
  2017年   1509篇
  2016年   1509篇
  2015年   1633篇
  2014年   2379篇
  2013年   2470篇
  2012年   2740篇
  2011年   2888篇
  2010年   2212篇
  2009年   2215篇
  2008年   2027篇
  2007年   2779篇
  2006年   2703篇
  2005年   2383篇
  2004年   1869篇
  2003年   1889篇
  2002年   1445篇
  2001年   1199篇
  2000年   1075篇
  1999年   787篇
  1998年   656篇
  1997年   452篇
  1996年   428篇
  1995年   344篇
  1994年   305篇
  1993年   211篇
  1992年   186篇
  1991年   148篇
  1990年   119篇
  1989年   98篇
  1988年   59篇
  1987年   36篇
  1986年   28篇
  1985年   35篇
  1984年   33篇
  1983年   27篇
  1982年   22篇
  1981年   10篇
  1980年   11篇
  1979年   5篇
  1978年   3篇
  1977年   11篇
  1975年   5篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 24 毫秒
61.
矿产资源属于耗竭性资源,基于其稀缺性和不可再生性,从国家资源安全战略考虑,通过节约集约利用缓解资源短缺问题是一种有效的途径。本文以矿产资源节约集约利用为研究目标,从政策驱动和技术驱动角度,研究了规划、税收、监管、标准、资源禀赋条件、采矿技术、选矿技术等驱动因素的驱动机理,以及与矿产资源利用的关系,分析了各驱动因素的现行政策和存在的问题。研究表明,各驱动因素促进矿产资源节约集约利用的过程是相互的、复杂的,在多因素的共同作用下,驱动因素之间的协同能力是实现目标的关键,协同程度越高,矿产资源节约集约利用的成效越好。  相似文献   
62.
Non-precious metal-based catalysts for oxygen evolution reaction (OER) have been extensively studied, among which the transition metal X-ides (including phosph-ides, sulf-ides, nitr-ides, and carb-ides) materials are emerging as promising candidates to replace the benchmark Ir/Ru-based materials in alkaline media. However, it is controversial whether the metal Xides host the real active sites since these metal Xides are thermodynamically unstable under a harsh OER environment—it has been reported that the initial metal Xides can be electrochemically oxidized and transformed into corresponding oxides and (oxy)hydroxides. Therefore, the metal Xides are argued as “pre-catalysts”; the electrochemically formed oxides and (oxy)hydroxides are believed as the real active moieties for OER. Herein, the recent advances in understanding the transformation behavior of metal Xides during OER are re-looked; importantly, hypotheses are provided to understand why the electrochemically formed oxides and (oxy)hydroxides catalysts derived from metal Xides are superior for OER to the as-prepared metal oxides and (oxy)hydroxides catalysts.  相似文献   
63.
The thermal stability and decomposition mechanisms of Fe2AlB2 powders, synthesized by reactive powder metallurgy, were studied under nitrogen (N2) or argon (Ar) atmospheres. The effects of using different FeB precursors to synthesize the Fe2AlB2 and hydrochloric acid (HCl) purification treatments on the thermal stability were also investigated. When as-synthesized Fe2AlB2 powders are treated in dilute HCl to dissolve impurity phases, decomposition in N2 atmospheres occurs readily above 1200 K. The decomposition reaction involves β-FeB precipitation and the liberated Al atoms reacting with the ambient N2 to form AlN. Under Ar environments, HCl-treated Fe2AlB2 powders decompose and precipitate β-FeB, by the out-diffusion of Al from the nanolaminated structure. Interestingly, isothermal annealing under N2 atmospheres revealed that Fe2AlB2 was more thermally stable when synthesized from lab-synthesized, instead of commercially available, FeB precursors and when the HCl treatment was avoided. The effects of the various factors on the decomposition temperature and decomposition mechanisms are discussed herein.  相似文献   
64.
In recent years,iron(Fe)based degradable metal is explored as an alternative to permanent fracture fixation devices.In the present work,copper(Cu)is added in Fe-Mn system to enhance the degradation rate and antimicrobial properties.Fe-Mn-xCu(x=0.9,5 and 10 wt.%)alloys are prepared by the melting-casting-forging route.XRD analysis confirms austenite phase stabilization due to the presence of Mn and Cu.As predicted by Thermo-Calc calculations,Cu rich phase precipitations are noticed along the austen-ite grain boundaries.Degradation behaviours of Cu added Fe-Mn alloys are investigated through static immersion and electrochemical polarization where enhanced degradation is found for higher Cu added alloys.When challenged against E.Coli bacteria,the Fe-Mn-Cu alloy media extract shows a significant bac-tericidal effect compare to the base alloy.In vitro cytocompatibility studies,as determined using MG63 and MC3T3-E1 cell lines,indicate increased cell density as a function of time for all the alloys.When implanted in rabbit femur,the newly developed alloy does not show any kind of tissue necrosis around the implants.Better osteogenesis and higher new bone formation are observed with Fe-Mn-10Cu alloy as evident from micro-computed tomography(μ-CT)and fluorochrome labelling.  相似文献   
65.
We investigated some properties of the hydride Mg2FeH6 substituted with yttrium by a first principles calculation. Some experimental results showed that 4d transition metal, yttrium serves as a good catalyst for magnesium based hydrogen storage alloys, but there are a few theoretical studies about magnesium based hydrides substituted with it. Mg2FeH6 is regarded as a cheaper material than pure MgH2, while it is crystalized into Fm3m structure (space group 225). Although it has high hydrogen storage capacity, many investigations have not been devoted to it due to its extremely high thermodynamic stability. The yttrium substituted Mg2FeH6 exhibits very low energy of formation, and its desorption temperature, 75 °C is very suitable for practical hydrogen storage applications. Our results showed that Mg2FeH6 is destabilized effectively by yttrium substitution and introducing vacancy defects has additive effect to the improvement of dehydrogenation performance.  相似文献   
66.
The development of efficient and stable oxygen evolution reaction (OER) catalysts is an ongoing challenge. In order to solve the problem of low oxygen evolution efficiency of the current OER catalysts, a novel material was synthesized by the incorporation of NiFeCr-LDH and MoS2, and its structural and electrochemical properties were also investigated. The introduction of MoS2 improves the electrochemical performance of NiFeCr-LDH. The polarization curve shows that the potential of composite material is only 1.50 V at a current density of 10 mA cm?2, which is far superior to commercial precious metal catalysts. In addition, the stability experiment shows that the composite material has excellent stability, and the current density has little change after 500 cycles. Furthermore, we found that some metal ions, such as Ni, Cr and Mo, exist in the form of high valence on the surface of NiFeCr-LDH@MoS2, which is also conducive to the occurrence of oxygen evolution reaction.  相似文献   
67.
Rational design of oxygen evolution reaction (OER) electrocatalysts with advance nanostructures and composition superiority is an urgent need to promote electrocatalytic property. In this research, we fabricate Fe–NiCoP/NiCoP/NF electrocatalyst for OER via the interfacial scaffolding strategy with Prussian-blue-analogue (PBA) followed by low-temperature phosphating. The cube-on-sheet multimetallic-TMPs-based nanoarchitecture of Fe–NiCoP/NiCoP/NF exhibits outstanding OER performance, which only requires the overpotential of 201 mV to achieve a current density of 10 mA cm−2 and possesses good durability up to 50 h in 1.0 M KOH solution. The superior OER property of Fe–NiCoP/NiCoP/NF is mainly characteristic to the rich composition that optimizes the electronic structure and the cube-on-sheet multimetallic-TMPs-based nanoarchitecture which can facilitate more effective active sites exposure and ultimately promote charge transfer at the same time. This research provides a new strategy for the construction of advanced nanoarrays structure and the improvement of the electrocatalytic performance of polymetallic phosphides, which offers its promising applications especially in energy storage and conversion technology.  相似文献   
68.
In this study, design and performance analysis is carried out for a 10 kWh metal hydride based hydrogen storage system. The system is equipped with distinctive aluminium hexagonal honeycomb based heat transfer enhancements (HTE) having higher surface area to volume ratio for effective heat transfer combined with low system weight addition. The system performance was studied under different operating conditions. The optimum absorption condition was achieved at 35 bar with water at room temperature as heat transfer fluid where up to 90% absorption was completed in 7200 s. The performance of the reactor was observed to significantly improve upon the addition of the HTE network at a minimal system weight penalty.  相似文献   
69.
The lithium metal battery has attracted considerable attention as the ultimate lithium secondary battery for high energy density. However, safety issues and battery performance deterioration due to the growth of lithium dendrites have hampered the practical use of lithium metal batteries. Recently, lithium fluoride has been considered as a lithium metal protective layer to solve this problem. In this review, firstly, the results of the studies on dendrites and SEI that have been carried out to date are reviewed. Secondly, the results of studies on lithium fluoride are divided into additive, artificial SEI, and other methods and the possibilities of their practical use are discussed. Finally, the significance and limitations of the lithium fluoride studies are summarized, and general conclusions and prospects for recommended research directions to accelerate the commercialization of lithium metal batteries are presented.  相似文献   
70.
Shredder residue materials are produced after the removal of ferrous and non-ferrous fractions from end-of-life electronic equipment. Despite the high plastic content and metal value in the ash, high percentages of these materials are currently sent to landfills. In this study, the potential of utilising shredder residue material and other plastic-containing materials as reducing agents was studied. Plastic-containing materials were co-injected with coal into a zinc-fuming furnace in Boliden-Rönnskär smelter. The data obtained from the trial, such as the data from the chemical analysis of the slag and the steam production, are discussed. The observations indicate that plastic-containing material can replace up to 1?ton?h?1 of coal without a significant decrease in the zinc reduction rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号